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We consider the evolution of the vorticity initially concentrated on
a torus of small section (i.e. vortex ring). Let us analyse first the
Euler flow

∂tω + (u · ∇)ω = (ω · ∇)u ,

u(ξ, t) = − 1

4π

∫
R3

dη
(ξ − η) ∧ ω(η, t)

|ξ − η|3
.

We take initial data such that the velocity field is axisymmetric
without swirl, that is, introducing cylindrical coordinates (z , r , θ),

ez = (1, 0, 0) “horizontal”

er = (0, cos θ, sin θ) “radial”

eθ = (0,− sin θ, cos θ) “toroidal”

u = uz(z , r , t)ez + ur (z , r , t)er

ω = ωθ(z , r , t)eθ , ωθ = ∂zur − ∂ruz





The incompressibility condition writes

divu = ∂zuz + ∂rur +
1

r
ur = 0 .

In terms of the component ωθ := ω the evolution equation for ω
reads

∂tω + (uz∂z + ur∂r )ω − urω

r
= 0

and

uz =− 1

2π

∫
dz ′
∫ ∞

0
r ′dr ′∫ π

0
dθ

ω(z ′, r ′, t)(r cos θ − r ′)

[(z − z ′)2 + (r − r ′)2 + 2rr ′(1− cos θ)]3/2

ur =
1

2π

∫
dz ′
∫ ∞

0
r ′dr ′∫ π

0
dθ

ω(z ′, r ′, t)(z − z ′) cos θ

[(z − z ′)2 + (r − r ′)2 + 2rr ′(1− cos θ)]3/2



this means that ω is conserved along the flow,

ω(z(t), r(t), t)

r(t)
=
ω(z(0), r(0), 0)

r(0)

with (z(t), r(t)) solution to

ż(t) = uz(z(t), r(t), t) , ṙ(t) = ur (z(t), r(t), t)

The initial value problem for the axisymmetric solution to the Euler
(and Navier-Stokes) equation has been studied since the pioneering
papers of
Ladyzhenskaya, Zapisky Nauchnych Sem. (1968)

Ukhovskii and Yudovitch, J. Appl. Math. Mech. (1968) and more
recently by
Feng and Šverák, Arch. Ration. Mech. Anal. (2015)

Gallay and Šverák, Confluentes Math. (2015), Ann. Sci. Éc. Norm.

Supér. (2019), preprint (2023)

regarding (for N-S) an initial vorticity either integrable or a circular
vortex filament.



Here we focus on the following property of the solution: one (or
more) vortex ring evolves with uniform velocity parallel to the
symmetry axis in the limit of high concentration.
Such behavior reflects what happens also in the stationary case, as
proved first rigorously by
Fraenkel, Proc. Roy. Soc. Lond. A. (1970)

Fraenkel and Berger, Acta Math. (1974)

More precisely, if the vorticity is supported in an annulus of
thickness ε and fixed radius (distance from the symmetry axis),
and the vorticity mass vanishes as | log ε|−1, then in the limit
ε→ 0 the vorticity remains concentrated in a thin annulus which
performs a rectilinear motion along the symmetry axis.

Such scaling of the vorticity mass as | log ε|−1 is due to have a
non-trivial velocity, i.e. not vanishing either diverging

V ≈ 1

4πr0
log

r0
ε

∫
dzdr ω(z , r , 0)



In case the distance of the ring from the symmetry axis is larger,
i.e. it diverges when ε→ 0, we have a different behavior.

When r0 ≈ | log ε| and the vorticity mass is O(1), then for one ring
alone it performs a uniform rectilinear motion, see
Marchioro and Negrini, NoDEA (1999)

whereas for many rings (interacting each other) we conjecture that
the motions of the centers of vorticity converge to a dynamical
system which is

ẋ i (t) = − 1

2π

N∑
j=1, j 6=i

aj∇⊥i log |x i (t)− x j(t)|+ aie1

with x i ∈ R2, e1 = (1, 0). It is a “modified” point vortex system,
which describes the so called leapfrogging phenomenon.



When r0 ≈ | log ε|α, for α > 2 (or a faster growth for ε→ 0) the
convergence is to the classical point vortex system (as in the planar
case), see
Cavallaro and Marchioro, J. Math. Phys. (2021).

Very recently
Dávila, Del Pino, Musso, and Wei, arXiv:2207.03263v3 (2023)

derive rigorously the leapfrogging dynamics from a different
scaling: they consider N coaxial vortex rings at finite distance from
the symmetry axis, with a mutual distance of order | log ε|−1/2.



We sketch now the results of the paper
Buttà, Cavallaro, and Marchioro, ZAMP (2022).

An equivalent weak formulation of the Euler equation in terms of
vorticity is obtained from the previous one by an integration by
parts

d

dt
ωt [f ] = ωt [uz∂z f + ur∂r f + ∂t f ]

where f = f (z , r , t) is any bounded smooth test function and

ωt [f ] :=

∫
dz

∫ ∞
0

dr ω(z , r , t)f (z , r , t)

considering an initial bounded vorticity ω(z , r , 0) with compact
support contained in the open half-plane Π := {(z , r) : r > 0}.
A point in Π corresponds to a circumference in R3.



We fix the initial data: given ε ∈ (0, 1)

ωε(z , r , 0) =
N∑
i=1

ωi ,ε(z , r , 0)

where ωi ,ε(z , r , 0), i = 1, . . . ,N, are functions with definite sign
whose support

Λi ,ε(0) := suppωi ,ε(·, 0) ⊂ Σ(ζ i |ε)

with

Σ(ζ i |ε) ⊂ Π ∀ i , Σ(ζ i |ε) ∩ Σ(ζ j |ε) = ∅ ∀ i 6= j

for fixed ζ i = (zi , ri ) ∈ Π. We assume also that

min
i

ri > 2D ∀ i , |ri − rj | ≥ 2D ∀ i 6= j

where D is a positive fixed constant. This means that the annuli
have different radii, which is an essential hypothesis.



Such decomposition extends to positive time setting

ωε(z , r , t) =
N∑
i=1

ωi ,ε(z , r , t)

with ωi ,ε(x , t) the time evolution of the ith vortex ring,

ωi ,ε(z(t), r(t), t) :=
r(t)

r(0)
ωε,i (z(0), r(0), 0) .

To have a finite speed for the ith vortex ring we take the following
normalization for the vorticity mass: we assume that there are N
real parameters a1, . . . , aN , called vortex intensities, such that

| log ε|
∫

dz

∫ ∞
0

dr ωi ,ε(z , r , 0) = ai ∀ i = 1, . . . ,N .

Finally, to avoid too large vorticity concentrations, we further
assume there is a constant M > 0 such that

|ωi ,ε(z , r , 0)| ≤ M

ε2| log ε|
∀ (z , r) ∈ Π ∀ i = 1, . . . ,N .



Theorem
Assume the previous initial data ωε(x , 0), and define

ζ i (t) := ζ i +
ai

4πri

(
1
0

)
t , i = 1, . . . ,N .

Then, for any T > 0 the following holds true. For any ε small
enough there are ζ i ,ε(t) ∈ Π, t ∈ [0,T ], i = 1, . . . ,N, and Rε > 0
such that ∀ t ∈ [0,T ]

lim
ε→0
| log ε|

∫
Σ(ζ i,ε(t)|Rε)

dz dr ωi ,ε(z , r , t) = ai ∀ i = 1, . . . ,N

with

lim
ε→0

Rε = 0, lim
ε→0

ζ i ,ε(t) = ζ i (t) ∀ t ∈ [0,T ] .



Some remarks:

The assumption |ri − rj | ≥ 2D allows to prove that the supports
Λi ,ε(t) ∩ Λi ,ε(t) = ∅ for any i 6= j and t ≥ 0, by a strong
localization property on each support that we are able to prove
along the r -direction (the same it is not true along the
z-direction). The prevention of an overlap of the supports it is
crucial for our technique.

Our analysis concerns an asymptotic regime ε→ 0 in which the
interaction between different rings actually vanishes, so that the
limiting motion of each ring is not influenced by the other ones.
Features of the dynamics for finite ε, as the leapfrogging
phenomenon, although very interesting, are not described by our
method.



The necessity to fix an (arbitrary) maximum time T comes from
the application of a concentration result stated in
Benedetto, Caglioti, and Marchioro, Math. Meth. Appl. Sci (2000)

in which some uniform bounds on the axial motion require a finite
translation in this direction.

It should be investigated the possibility to let T ≈ | log ε| as done
(in the planar case) in
Buttà and Marchioro, SIAM J. Math. Anal. (2018)

in which the planar symmetry allows to get a good estimate on the
moment of inertia.



Strategy of the proof:

We first show the corresponding result for a “reduced system”,
where a vortex ring alone moves under the action of a suitable
external time-dependent vector field. The result for the original
model is then achieved by treating the motion of each vortex ring
as that of a reduced system, in which the external field describes
the force due to its interaction with the other rings.

The key tool in the planar case is a sharp a priori estimate on the
moment of inertia, which is not available in the axial symmetric
case because the velocity field is not a Lipschitz function.

A suitable decomposition of the velocity field shows that its non
Lipschitz part is directed along the z-axis, which suggests that the
vorticity should stay more localized along the radial direction,
Indeed, this is true and allows us to deduce an estimate on a
different quantity, the “axial moment of inertia”, which makes
possible to build up an iterative scheme convergent at any positive
time, thus deducing a sharp localization property along the radial
direction globally in time.



Reduction to a single vortex problem.
We put x = (x1, x2) := (z , r). The equations of motion take the
following form,

u(x , t) =

∫
dy H(x , y)ωε(y , t) ,

ωε(x(t), t) =
x2(t)

x2(0)
ωε(x(0), 0) ,

ẋ(t) = u(x(t), t)+F ε(x(t), t) ,

where u(x , t) = (u1(x , t), u2(x , t)) and the kernel
H(x , y) = (H1(x , y),H2(x , y)) is given by

H1(x , y) =
1

2π

∫ π

0
dθ

y2(y2 − x2 cos θ)[
|x − y |2 + 2x2y2(1− cos θ)

]3/2
,

H2(x , y) =
1

2π

∫ π

0
dθ

y2(x1 − y1) cos θ[
|x − y |2 + 2x2y2(1− cos θ)

]3/2
.



The external field F ε(x(t), t) is introduced to simulate the action
of the other vortices on a given one.

Hence it is taken continuous, Lipschitz, and divergence free.

The first two assumptions derive from the fact that the supports of
the ωi ,ε (in the original model) are disjointed, hence the velocity
field produced by ωi ,ε in the region where ωj ,ε is supported (for
i 6= j) is regular.

The assumptions on ωε(x , 0) are the same as for ωi ,ε given before.



Theorem
Let

ζ(t) = ζ0 +
a

4πr0

(
1
0

)
t .

Then, for each T > 0 the following holds true.
• For any k ∈

(
0, 1

4

)
there is Ck > 0 such that, for any ε small

enough and ∀ t ∈ [0,T ]

Λε(t) := suppωε(x , t) ⊂ {x ∈ R2 : |x2 − r0| ≤ Ck | log ε|−k} .

• For any ε small enough there are ζε(t) ∈ Π and %ε > 0 such that
∀ t ∈ [0,T ]

lim
ε→0
| log ε|

∫
Σ(ζε(t)|%ε)

dx ωε(x , t) = a ,

with
lim
ε→0

%ε = 0, lim
ε→0

ζε(t) = ζ(t) .



Remark: notice that the Theorem describing the original model of
N vortex rings follows easily by the one of the Reduced System.

We give a sketch of the proof of the last Theorem.

We analyse separately the radial and the axial motion.
The kernel H(x , y) can be split as

H(x , y) = K (x − y) + L(x , y) +R(x , y) ,

K (x) = ∇⊥G (x) , G (x) := − 1

2π
log |x | ,

where v⊥ := (v2,−v1) for v = (v1, v2),

L(x , y) =
1

4πx2
log

1 + |x − y |
|x − y |

(
1
0

)
and R(x , y) is bounded by

|R(x , y)| ≤ C0
1 + x2 +

√
x2y2

(
1 + | log(x2y2)|

)
x2

2

.



Thus the velocity field can be decomposed accordingly

u(x , t) = ũ(x , t) +

∫
dy L(x , y)ωε(y , t) +

∫
dy R(x , y)ωε(y , t) ,

where ũ(x , t) =
∫
dy K (x − y)ωε(y , t).

Lemma
The following estimates hold true,∫

dy |L(x , y)|ωε(y , t) ≤ C ,

∫
dy |R(x , y)|ωε(y , t) ≤ C

| log ε|
.



We denote by Bε(t) = (Bε,1(t),Bε,2(t)) the center of vorticity of
the blob, defined by

Bε(t) =

∫
dx x ωε(x , t)∫
dx ωε(x , t)

= | log ε|
∫
dx x ωε(x , t) ,

and by Iε(t) the axial moment of inertia with respect to
x2 = Bε,2(t), i.e.,

Iε(t) =

∫
dx (x2 − Bε,2(t))2 ωε(x , t) .



We compute their time derivative, and obtain

|Ḃε,2(t)| ≤ C

| log ε|
,

|İε(t)| ≤ C

| log ε|3/2

√
Iε(t) +

C

| log ε|2
.

By integration of the last differential inequality, since the initial
data imply Iε(0) ≤ 4ε2, we get

Iε(t) ≤ C

| log ε|2
.

This bound will be an essential tool in the following.



In
Buttà and Marchioro, J. Math. Fluid Mech. (2020)

a more sophisticated argument allows to obtain the same estimate
C/| log ε|2 for the moment of inertia with respect to the center of
vorticity, but the whole argument works only for short times.

In our case, we are able to extend the analysis to any positive time,
thanks to the previous estimate on Iε(t) and to the absence of the
non Lipschitz term L(x , y) when we analyze separately the motion
along the radial direction.



The next Lemmas are preliminary to establish the property of
compact support along the radial direction.

Lemma

Rt := max{|x2 − Bε,2(t)| : x ∈ Λε(t)} .

Given x0 ∈ Λε(0), let x(x0, t) be the fluid particle with initial
condition x(x0, 0) = x0 and suppose at time t it happens that

|x2(x0, t)− Bε,2(t)| = Rt .

Then, at this time t,

d

dt
|x2(x0, t)− Bε,2(t)| ≤ C

| log ε|
+

1

πRt | log ε|
+

√
Cmt(Rt/2)

ε2| log ε|
,

where the function mt(h) is defined by

mt(h) =

∫
|y2−Bε,2(t)|>h

dy ωε(y , t) .



Lemma
For each ` > 0 and k ∈

(
0, 1

4

)
,

lim
ε→0

max
t∈[0,T ]

ε−`mt

(
1

| log ε|k

)
= 0 .

This Lemma, proved by an iterative method, states that the
vorticity mass contained in the region

|y2 − Bε,2(t)| > 1

| log ε|k

(i.e. outside the strip centered in Bε,2(t) and of width 2| log ε|−k)
is indeed smaller than any power of ε.
A further argument shows that it is effectively zero.



Where does the upper bound k < 1
4 come from?

In the proof of the previous Lemma one obtains an iterative
scheme which, after n = Intg[| log ε|] steps, gives

mt(R0) ≤
(
C | log ε|4kt

)n
n!

with

R0 =
1

| log ε|k
.

Hence, by Stirling formula, mt(R0) ≤ ε` for any ` > 0 and for any
positive time only if k < 1

4 .

In
Buttà and Marchioro, J. Math. Fluid Mech. (2020)

they obtain convergence only for short times, since it is considered
the spread of the support of ωε both in r and z directions. Thus
the presence of the term L(x , y) forces to stop within short times.



Properties of the axial motion.
We extend to our context a Lemma which is proved in
Benedetto, Caglioti, and Marchioro, Math. Meth. Appl. Sci (2000)

Lemma
With the same initial conditions stated above, for each T > 0,
there are ε1 ∈ (0, 1), C1 > 0 and qε(t) ∈ R2, such that

| log ε|
∫

Σ(qε(t),ε| log ε|)
dx ωε(x , t) ≥ 1− C1

log | log ε|

∀ t ∈ [0,T ] and ∀ ε ∈ (0, ε1]. Moreover

qε(t)
ε→0−→

(
z0

r0

)
+

a

4πr0

(
1
0

)
t .

This concentration result, proved in [BCM2000] for one vortex ring
alone, is extended to our Reduced System (one vortex ring in an
external field).



The key ingredients to prove the previous concentration result, for
a vortex ring alone, are the following constants of motion

M0 =

∫
dx ωε(x , t)

M2 =

∫
dx x2

2 ωε(x , t)

E =
1

2

∫
dx 2πx2|u(x , t)|2 .

In presence of an external field F ε(x , t) the quantity M0 is still
conserved, while M2 and E are not.

By a direct computation, the time derivatives of M2 and E are
much smaller than their initial value, so they remain “almost”
constant and the concentration result is valid.



We use this result to infer the properties of the motion of the
vortex ring along the axial direction.
In particular, by some refined estimates, we conclude that

Bε(t)
ε→0−→

(
z0

r0

)
+

a

4πr0

(
1
0

)
t .

This is achieved also thanks to the (complete) moment of inertia
with respect to the center of vorticity

Jε(t) =

∫
dx |x − Bε(t)|2ωε(x , t) .

which can be bounded as

Jε(t) ≤ C

| log ε|
∀ t ∈ [0,T ] ,

This bound is weaker than the one for the axial moment of inertia
(C/| log ε|2) and not enough to make work a previous iterative
method. But it is sufficient to conclude the convergence of Bε,1(t)
to a uniform motion.



Case with small viscosity
We want to add now a small viscosity ν, and study the joint limit
for which ε→ 0, ν → 0, in such a way that ν ≤ ε2| log ε|γ with
γ ∈ (0, 1).
In
Gallay and Šverák, preprint (2023)

the authors are able to study the vanishing viscosity limit for one
initial vortex filament (which “corresponds” to ε = 0, ν → 0).

We consider in
Buttà, Cavallaro, and Marchioro, J. Math. Phys. (2022)

the same framework of the inviscid case. The main difficulty to
tackle is the fact that the supports of the ωi overlap at t > 0, and
this requires much care to define a Reduced System (one vortex in
an external field).
The external field (which simulates the other vortices) can be
singular.



We underline the main differences with the inviscid case. The
equation for ω is

∂tω + (uz∂z + ur∂r )ω − urω

r
= ν

[
∂2
zω +

1

r
∂r (r∂rω)− ω

r2

]
whereas in terms of the quantity ω/r the previous equation reads[

∂t + uz∂z +

(
ur −

3ν

r

)
∂r

](ω
r

)
= ν

(
∂2
z + ∂2

r

) (ω
r

)
,

which means that ω/r evolves as a diffusion with drag, and it
admits a “maximum principle”, i.e. ω/r reaches its maximum
initially.



By an integration by parts, the following weak formulation of the
previous equation holds true,

d

dt
ωt [f ] = ωt [uz∂z f + ur∂r f + ∂t f ] + νωt

[
∂2
z f + ∂2

r f −
1

r
∂r f

]
,

where

ωt [f ] :=

∫
dz

∫ ∞
0

dr ω(z , r , t)f (z , r , t) ,

and f = f (z , r , t) is any smooth test function, such that the
boundary terms in the integration by parts vanish (at r = 0 and
r = +∞).



We prepare the same initial data as for the inviscid case

ω(z , r , 0) =
N∑
i=1

ω0
i ,ε(z , r) ,

with
Λi ,ε(0) := suppωi ,ε(·, 0) ⊂ Σ(ζ i |ε) ,

Σ(ζ i |ε) ⊂ Π ∀ i , Σ(ζ i |ε) ∩ Σ(ζ j |ε) = ∅ ∀ i 6= j .

At positive time this separation is no more true. Nevertheless, the
following decomposition is possible

ωε(z , r , t) =
N∑
i=1

ωi ,ε(z , r , t) ,

provided ωi ,ε(z , r , t), i = 1, . . . ,N, satisfy

∂tωi ,ε + (uz∂z + ur∂r )ωi ,ε −
urωi ,ε

r
= ν

[
∂2
zωi ,ε +

1

r
∂r (r∂rωi ,ε)−

ωi ,ε

r2

]
,

ωε(z , r , 0) = ω0
i ,ε(z , r) ,

where (uz , ur ) is the velocity field associated to the whole vorticity
ωε(z , r , t).



Theorem
With an initial datum ω(z , r , 0) specified above, and defining

ζ i (t) := ζ i +
ai

4πri

(
1
0

)
t , i = 1, . . . ,N ,

then, for any T > 0 the following holds true. For any ε small
enough and ν ≤ ε2| log ε|γ , with γ ∈ (0, 1), there are ζ i ,ε(t) ∈ Π,
i = 1, . . . ,N, and Rε > 0 such that ∀ t ∈ [0,T ]

lim
ε→0
| log ε|

∫
Σ(ζ i,ε(t)|Rε)

dz dr ωi ,ε(z , r , t) = ai ∀ i = 1, . . . ,N ,

(1)
with

lim
ε→0

Rε = 0, lim
ε→0

ζ i ,ε(t) = ζ i (t) ∀ t ∈ [0,T ] ,

where ω(z , r , t) is the time evolution of ω(z , r , 0) via the
Navier-Stokes equations.



We remark that the quite strong assumption ν ≤ ε2| log ε|γ is
needed to control the energy dissipated by viscosity.
This seems an unavoidable condition to obtain the concentration
result (1), which requires a very small time variation of the energy.
In fact from the well known formula (in absence of external field)

Ė (t) = −ν
∫
R3

dξ

3∑
i ,j=1

(
∂ξjui (ξ, t)

)2
= −ν

∫
R3

dξ |ω(ξ, t)|2

= −2πν

∫
dx ω2

ε(x , t)x2 ≥ −2πνM2(t)

∥∥∥∥ωε(t)

x2

∥∥∥∥
L∞

≥ − Cν

ε2| log ε|2

therefore,

− C
| log ε|γ

| log ε|2
≤ − Cν

ε2| log ε|2
≤ Ė ≤ 0 ,

by the assumption ν ≤ ε2| log ε|γ , where γ < 1.



As for the Euler case, ωi ,ε(z , r , t) can be viewed as the evolution of
a single vortex ring driven by the sum of the velocity generated by
ωi ,ε itself plus an external time-depending field (the sum of the
velocities generated by ωj ,ε for j 6= i).

Therefore, the proof of the Theorem will be obtained as a corollary
(based on a bootstrap argument) of the analogous result for a
modified system, which describes the motion of a single vortex in
an external field.



A single vortex in an external field

We introduce an external time-dependent field
F ε(x , t) = (F ε1 (x , t),F ε2 (x , t)). There are M > 0, a > 0, and
ζ0 = (z0, r0), with r0 > 0, such that

0 ≤ ωε(x , 0) ≤ M

ε2| log ε|
∀ x ∈ R2 , | log ε|

∫
dy ωε(y , 0) = a ,

and
Λε(0) := suppωε(·, 0) ⊂ Σ(ζ0|ε) .

The equation of motion is obtained replacing u by u + F ε, i.e.,

∂tωε+
[
(u+F ε)·∇

]
ωε−

u2ωε
x2

= ν

[
∂2
x1
ωε +

1

x2
∂x2(x2∂x2ωε)−

ωε
x2

2

]
.



Concerning F ε, we suppose that it is the sum of three terms,

F ε(x , t) = F̂ ε(x , t) + F̃ ε(x , t) + F̄ ε(x , t) ,

each one being a smooth time-dependent field vanishing at infinity
and satisfying the conditions

∂x1(x2F̂
ε
1 ) + ∂x2(x2F̂

ε
2 ) = 0 , ∂x1(x2F̃

ε
1 ) + ∂x2(x2F̃

ε
2 ) = 0 ,

∂x1(x2F̄
ε
1 ) + ∂x2(x2F̄

ε
2 ) = 0 ,

which express the divergence free condition.



(i) there is r̂ > 0 such that

supp F̂ ε(·, t) ⊂ {x ∈ R2 : |x2 − r0| > r̂} ∀ t ≥ 0 ,

and there is Ĉ > 0 such that, for any (x , t) ∈ R2 × [0,+∞),

|F̂ ε(x , t)| ≤ Ĉ

ε| log ε|
;

without loss of generality, for later convenience, we also suppose

r̂ <
r0
4
.



(ii) there is C̃ > 0 such that, for any (x , y , t) ∈ R2×R2× [0,+∞),

|F̃ ε(x , t)| ≤ C̃

| log ε|
, |F̃ ε(x , t)− F̃ ε(y , t)| ≤ C̃

| log ε|
|x − y | ;

(iii) there are C̄ > 0 and β > 1 such that, for any
(x , t) ∈ R2 × [0,+∞),

|F̄ ε(x , t)| ≤ C̄εβ ∀ (x , t) ∈ R2 × [0,+∞) .



The term in (i) simulates the velocity field produced by the other
vortexes when the argument x of F̂ ε(x , t) is near the center of
vorticity of one of them. In this case the velocity field can diverge,
when ε→ 0. But around the same point x the vorticity mass of
ωε(x , t) is very small, by the condition

|ri − rj | ≥ 2D ∀ i 6= j

and this makes the integral∫
dx F̂ ε(x , t)ωε(x , t)

very small.



The term in (ii), present also in the Euler case, simulates the
velocity field produced by the core of the other vortexes when the
argument x of F̃ ε(x , t) is near the center of vorticity of ωε(x , t),
and hence it is bounded and Lipschitz.

The term in (iii) simulates the velocity field produced by the tail of
the other vortexes, and hence it is very small.



Theorem
Define

ζ(t) := ζ0 +
a

4πr0

(
1
0

)
t .

Then, for any T > 0 the following holds true. For any ε small
enough and ν ≤ ε2| log ε|γ , with γ ∈ (0, 1), there are ζε(t) ∈ Π
and %ε > 0 such that, for any t ∈ [0,T ],

lim
ε→0
| log ε|

∫
Σ(ζε(t)|%ε)

dz ωε(x , t) = a ,

with
lim
ε→0

%ε = 0, lim
ε→0

ζε(t) = ζ(t) ,

where ωε(x , t) is the time evolution of ωε(x , 0).



The proof will rely, as for the Euler case, on an a priori estimate of
the axial moment of inertia.

Then we we show that, for any ε small enough, the vorticity mass
remains highly concentrated in a thin horizontal strip centered
around x2 = r0.

We will need to extend to the present context the “concentration
result” already used in the inviscid case, which states that large
part of the vorticity remains confined in a disk whose size is
infinitesimal as ε→ 0.

It remains to characterize the motion of the center of vorticity in
the x1-direction, with constant speed a/(4πr0) when ε→ 0.



Since we use the following weak formulation

d

dt

∫
dx ωε(x , t)f (x , t) =

∫
dx ωε(x , t)

[
(u + F ε) · ∇f + ∂t f

]
(x , t)

+ ν

∫
dx ωε(x , t)

(
∆f − 1

x2
∂x2f

)
(x , t) ,

where ∆ = ∂2
x1

+ ∂2
x2

, we have the technical problem to avoid the
(unessential) singularity at x2 = 0. We introduce then the
following cut-offed versions of Bε(t) and Iε(t),

B∗ε (t) = | log ε|
∫
dx ωε(x , t)G (x2) x

I ∗ε (t) =

∫
dx ωε(x , t)

(
x2 − B∗ε,2(t)

)2
G (x2)

where

G ∈ C∞(R; [0, 1]) is such that G (x2) =

{
1 if x2 ≥ r0 − r̂ ,

0 if x2 ≤ (r0 − r̂)/2 .



We have for them the same kind of estimates obtained in the Euler
case

Lemma
Under the initial conditions stated before we have

|Ḃ∗ε,2(t)| ≤ C

| log ε|
∀ t ∈ [0,Tε]

and

I ∗ε (t) ≤ C

| log ε|2
∀ t ∈ [0,Tε] .



With these estimates we are able to implement an iterative scheme
as in the Euler case, showing that the vorticity mass out of a thin
strip parallel to the x1-axis and centered around x2 = r0 is very
small (less than any power of ε, for ε→ 0).

With respect to the analogous result in the Euler case, here we
have to take account of the presence of the viscosity (in particular,
this implies that the vorticity is not compactly supported) and the
presence of a less regular external field. However, these differences
do not condition too much the reasoning.



Lemma
Let mt be defined as

mt(h) =

∫
|x2−B∗ε,2(t)|>h

dx ωε(x , t) .

Then for each ` > 0 and k ∈
(
0, 1

4

)
,

lim
ε→0

max
t∈[0,Tε]

ε−`mt

(
1

| log ε|k

)
= 0 .



Analysis of the axial motion

We need first a concentration result, already used in the Euler
case, in the present one with a small viscosity.

Lemma
Taking ε0 ∈ (0, 1), for any η ∈ (γ, 1) there are ε1 ∈ (0, ε0), %1 > 0,
C1 > 0, and qε(t) ∈ R2, such that

| log ε|
∫

Σ(qε(t),%ε)
dx ωε(x , t) ≥ 1− C1

| log ε|η−γ
,

∀ t ∈ [0,T ], ∀ ε ∈ (0, ε1), with %ε = %1ε exp(| log ε|η).



This inequality is deduced from an upper bound on the kinetic
energy functional E = 1

2

∫
dξ |u(ξ, t)|2, which in cylindrical

coordinates x = (x1, x2) = (z , r) takes the form

E (t) =
1

2

∫
dx 2πx2|u(x , t)|2 ,

combined with the bounds

M0(t) =

∫
dx ωε(x , t) ≤ C

| log ε|
,

M2(t) =

∫
dx x2

2ωε(x , t) ≤ C

| log ε|
,

E (t) ≥ E (0)− Cν

ε2| log ε|2
≥ E (0)− C

| log ε|2−γ
,

with γ ∈ (0, 1) (for t ∈ [0,T ] and any ε small enough).
These bounds are due, in the present situation, to the effect of
viscosity and the external field (which simulates the action of the
other N − 1 vortex rings).



It remains to show that

lim
ε→0

qε,2(t) = r0 , lim
ε→0

qε,1(t) = z0 +
t

4πr0
∀ t ∈ [0,T ] .

The first limit is quite obvious, since the vorticity mass in the
region

|x2 − r0| >
1

| log ε|k

is smaller than ε`.
The second limit can be deduced by the following Lemma



Lemma
Let Bε,1(t) be the first component of the center of vorticity and let
Jε(t) be the corresponding radial moment of inertia,

Jε(t) =

∫
dx ωε(x , t) (x1 − Bε,1(t))2 .

Then,

lim
ε→0

Bε,1(t) = z0 +
t

4πr0
∀ t ∈ [0,T ] ,

Jε(t) ≤ C

| log ε|
∀ t ∈ [0,T ] .



Indeed, we claim that the previous Lemma implies

lim
ε→0
|Bε,1(t)− qε,1(t)| = 0 ∀ t ∈ [0,T ] ,

which gives the limit for qε,1(t) as ε→ 0. Note that also

lim
ε→0
|Bε,2(t)− qε,2(t)| = 0 ∀ t ∈ [0,T ] .

The first limit is obtained by using Jε(t), the Concentration
Lemma, and Cauchy-Schwarz inequality

|Bε,1(t)− qε,1(t)| ≤ C%ε +

√
C

| log ε|η−γ
√
| log ε|Jε(t) .



Thank you!


