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The 2D Euler equation

Oiw + u-Vw =0, in M C R? bounded (simply connected),
u=vVhty, Ay=uw,
w‘t:():cuo, u-n=0.

Given wg € L>(M), we have

d
W(t) = wp © ¢;1’ &(Dt = u((bt’ t)7 by = ld,

where ®; is a volume preserving homeomorphism.
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The 2D Euler equation

Oiw + u-Vw =0, in M C R? bounded (simply connected),
u=vVhty, Ay=uw,
w‘t:():cuo, u-n=0.

Given wg € L>(M), we have

d
W(t) = wp © ¢;1’ &(Dt = u((bt’ t)7 by = ld,

where ®; is a volume preserving homeomorphism.

® Yudovich '63: existence (Wolibner '33) and uniqueness of weak solutions on
X ={we L*M) : [[wl < llwoll -

® u(t;)) > @ along subsequence t; — oo for some @, namely
/ g(x)w(tj, x)dx —>/ g(x)@(x)dx, for any g € LY(M).
M M
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Robust invariants: Kinetic energy

E(w) := %/M|u\2dx: —%/sz/}dx, Ay = w,
E(@(t) =E(wo),  and  E(wp) = lim E(w(t)) = E(@)

tj—o0

If M is a disk or channel also angular or linear momentum are robust invariants.
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Robust invariants: Kinetic energy

E(w) := %/M|u\2dx: —%/sz/}dx, Ay = w,
E(@(t) =E(wo),  and  E(wp) = lim E(w(t)) = E(@)

tj—o0
If M is a disk or channel also angular or linear momentum are robust invariants.

Fragile invariants: by the transport structure, w(t) = wp o ®; we have

Casimirs :  Cr(w(t)) == /M f(w(t))dx = /M f(woo®; H)dx = Cr(wp), for t < oc.

In general, Cr(wo) = limg; 00 Cr(w(ty)) # Cr(©)
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Robust invariants: Kinetic energy

E(w) := %/M|u\2dx: —%/sz/}dx, Ay = w,
E(@(t) =E(wo),  and  E(wp) = lim E(w(t)) = E(@)

tj—o0
If M is a disk or channel also angular or linear momentum are robust invariants.
Fragile invariants: by the transport structure, w(t) = wp o ®; we have

Casimirs :  Cr(w(t)) == /M f(w(t))dx = /M f(woo®; H)dx = Cr(wp), for t < oc.

In general, Cr(wo) = limg; 00 Cr(w(ty)) # Cr(©)
If f is convex, by l.s.c. we have

Cr(@) < liminf Ce(w(t;)) = Cr(wo).-

tj—o0

Mixing: Cr(@) < Cr(wo).
What can be said at t = oo accounting only for the invariants?
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Example

® Let M =T?2 Then w(x) = > ke Opekx.
® Suppose that @ is s.t. & = 0 for |k| < N.
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Example

® Let M =T2 Then w(x) = Y,z @re™™.
® Suppose that @ is s.t. &y = 0 for |k| < N.
® Since [|@| > < [Jwoll,2. if N> 1, we get

-\ 1 1 = 2 1 — 112 1 2
E®) = G2 MZWMQM S 1y 1912 S s Nl < E(wo).

But E(@) = E(wp). So N cannot be too large.
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Example

® Let M =T2 Then w(x) = Y,z @re™™.
® Suppose that @ is s.t. &y = 0 for |k| < N.
® Since [|@| > < [Jwoll,2. if N> 1, we get

1 1

_ = 1 —112 1 2
E(@) = (2r) Z WWH2 S W &l < W [lwoll72 < E(wo).

Ik[=N

But E(@) = E(wp). So N cannot be too large.

Some low frequency piece must survive. Large spatial scale structures!
Inverse cascade, Kraichnan '67.

If &, = 0 for all |k| > N, then w is stationary (Elgindi/Hu/Sverak '15).
Something which is not steady must always have high frequency part.
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Figure: Top: Numerics by Constantinou/Drivas '21. Bottom: Schecter/Dubin

/Fine/Driscoll '99 (a) experiment of pure electron plasma (b) numerics of 2D Euler.
M. Dolce
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Modin/Viviani '21 numerics on Zeitlin model. Nice idea: split the vorticity

w
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s(h)zl =

—d/
) [V

Maximally mixed equilibria

ws + w, with ws average along the streamlines y(h) = {x :

P(x) = h}

ws is large scale, contains most of the energy but only a fraction of enstrophy.

w, is small scale, very little energy but more enstrophy w.r.t ws.
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SUPPLEMENTO AL VOLUME VI, 2ERIE IX DEL XUOVO CIMENTO N. 2, 1049

XIIT.

Statistical Hydrodynamics. (*)

L. ONSAGER

New Haven, Conn.

Ergodic Motion of Parallel Vortiees,

The formation of large, isolated vortices is an extremely common, yet
spectacular phenomenon in unsteady flow. Its ubiquity suggests an expla-
nation on statistical grounds,

Statistical mechanics approach for
N-point vortices. Clustering of likely
signed vortices and negative
“temperature” states. But

[N = 00, T — 0] # 0. See
Eyink/Sreenivasan '06.
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Statistical hydrodynamics after Onsager

® Kraichnan '67, Joyce/Montgomery '70, Caglioti/Lions/Marchioro/Pulvirenti,
Chavanis, Eyink/Spohn '90s...
See review of Bouchet/Venaille '12.
For example, Kraichnan predicts that the most probable state minimizes the
enstrophy in X N {E = Eg}. Dynamically accessible?

® Miller, Robert, Sommeria '90s: Finite dimensional approximation of 2D Euler
by discretizing vorticity. Stat. mech. approach where permutation of squares
generates the accessible states. They obtain a variational problem taking into
account all finite time conserved quantities.

® Turkington '99: Fourier truncation of 2D Euler in T? with the Fejer kernels:
Fu(x) = (2m) 72 Y (1= |kl /N)(1 = [kal /N)e™
[k|<N

Knlw] == Fn * w.
This kernel has some special properties.
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Two conjectures about the infinite time-behaviour
Statements from Drivas/Elgindi '22.

Sverak’s conjecture '11: Generic initial data wy € L°(M) gives rise to

inviscid incompressible motions whose vorticity orbits {w(t)}:cr are
not precompact in L2(M).

Some mixing, e.g. |[&||,2 < ||wol|,2, is happening.
Vortex merging is consistent with this conjecture. Irreversibility at infinite times.
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Two conjectures about the infinite time-behaviour
Statements from Drivas/Elgindi '22.

Sverak’s conjecture '11: Generic initial data wy € L°(M) gives rise to
inviscid incompressible motions whose vorticity orbits {w(t)}:cr are
not precompact in L2(M).

Some mixing, e.g. |[&||,2 < ||wol|,2, is happening.
Vortex merging is consistent with this conjecture. Irreversibility at infinite times.

Shnirelman’s conjecture '13: For any initial data wy € L>°(M), the col-
lection of L?(M) weak limits of the orbits {w(t)}+cr consists of vorticities
whose orbits are precompact in L2(M).

After t = co, you cannot mix more. Euler is “maximally mixing”.
This is consistent with predictions of statistical hydro of reaching a stationary
state. It is also true if we reach a periodic or quasi periodic state.

See Bedrossian/Masmoudi '13 (and related works) and Elgindi/Murray/A.R. Said
'22 A.R. Said/Jeong '23.
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Area preserving rearrangements and weak-* closure

For 2D Euler, w(t) = wp o ®; } is a rearrangement of wp. Define
Oy = {wo 0o ¢ : ¢ area preserving diffeo of M}.

® Consider the weak-* closure of this set.
Namely, for wo € L™, let {¢n}n2;. Then

*  _ * > _
woop — w € Oy, (also wg 0 ¢, = @)
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Area preserving rearrangements and weak-* closure

For 2D Euler, w(t) = wp o ®; } is a rearrangement of wp. Define
Oy = {wo 0o ¢ : ¢ area preserving diffeo of M}.

® Consider the weak-* closure of this set.
Namely, for wo € L™, let {¢n}n2;. Then

*  _ * > _
woop — w € Oy, (also wg 0 ¢, = @)

® The set Oiwo* is convex and can be characterized (Chong, Ryff... '60-'70s)

Owo*_{wex7/w_/ w07/ f(w)g/ f(wp) for all convex f},
M M M M

where X = {[|w]|;~ < ||lwoll;~}-
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Chong, Ryff, 60s-70s and Brenier/Gangbo '03 observed also that
Oy ={we X : w= Kwo], K bistochastic}

where K is a bistochastic operator if:
® K: Mx M — R is such that

K >0, /K(X,~)dX:/ K(-,y)dy =1,
M M

Klwl(x) = /M K(x, y)l(y)dy.
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Chong, Ryff, 60s-70s and Brenier/Gangbo '03 observed also that
Oy ={we X : w= Kwo], K bistochastic}

where K is a bistochastic operator if:
® K: Mx M — R is such that

K >0, /K(X,~)dX:/ K(-,y)dy =1,
M M

Klo) = [ Klxy)tnay.
Examples:
® Kmix = 1/|[M| and Kpix[w] = [,,w/|M|. Complete mixing.
* K, =0(y —p(x)) and K, [w] = w o ¢, for any area preserving map .
* If K1, K bistochastic, then also K = AKy + (1 — A)Ka, A € [0, 1].
® Ky[w] = Fn *w where Fy is the Féjer kernel (Turkington)
* K, (x,y) =6(y — v(x))/|V¥| the Modin/Viviani streamlines projection.
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Owo*:{wex,/ w:/ Woy/ f(w)g/ f(wo) for all convex f},
M M M M

={w e X : w= K]wop], K bistochastic}

where X = {||w|]; < [|wol| s }-

This set is too large to be relevant for Euler, no energy conservation.
If [wo =0 then Kmix[wo] =0 € Oy, (complete mixing in T? for instance)
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Owo*:{wex,/ w:/ Woy/ f(w)g/ f(wo) for all convex f},
M M M M

={w e X : w= K]wop], K bistochastic}

where X = {||w|]; < [|wol| s }-

This set is too large to be relevant for Euler, no energy conservation.
If [wo =0 then Kmix[wo] =0 € Oy, (complete mixing in T? for instance)

All the infinite time limits of 2D Euler are contained in:

Qi (wo) = [ {woo @", £ 2 s} €O, N{E(w) = E(wo)}.
s>0

Shnirelman '93: found special steady states of 2D Euler in O, N{E(w) =
E(wo)} as a consequence of Zorn's lemma.
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© Maximally mixed equilibria
@ Proof that minimal are steady
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Minimal elements or maximally mixed states

0o, ={we X : w= K|w], K bistochastic}

_{weX,/Mw—/Mwo,/Mf(w)g/Mf(wo) for all convex f}.

We have two natural partial ordering. Let wy,w, € O, N {E = Eg}:
(1) Shnirelman '93: w; <5 wy if 3 K bistochastic s.t. w1 = Kwy.
(2) D/Drivas '22: wy =< ws if 3 a strictly convex f s.t. Cr(w1) < Cr(w2).
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Minimal elements or maximally mixed states

0o, ={we X : w= K|w], K bistochastic}

_{weX,/Mw—/Mwo,/Mf(w)g/Mf(wo) for all convex f}.

We have two natural partial ordering. Let wy,w, € O, N {E = Eg}:
(1) Shnirelman '93: w; <5 wy if 3 K bistochastic s.t. w1 = Kwy.
(2) D/Drivas '22: wy =< ws if 3 a strictly convex f s.t. Cr(w1) < Cr(w2).

Minimal elements: An w* € O,, N {E = Eo} is minimal if for all w €
0w, N{E=Eg} st. w < w* then w* < w. We say w ~ w* (or <s,~s).

Minimal elements are maximally mixed.
Decrease of any Casimir Cr requires a change of energy.

M. Dolce Maximally mixed equilibria 13/23



Equivalence of the two definitions

Lemma (D/Drivas '22)

Let wy € X, K bistochastic and w; = K[w,]. There exists K bistochastic s.t.
wy = Klwi] if and only if Cr(w1) = C¢(wy) for any strictly convex f.

® We state for any strictly convex f since if it is true for one it is true for all.
In fact, we prove that w; and wy are equimeasurable.

® The two concepts of minimal flows are equivalent, wy ~ wy, <= w1 ~s wo.
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Equivalence of the two definitions

Lemma (D/Drivas '22)

Let wy € X, K bistochastic and w; = K[w;]. There exists K bistochastic s.t.
wy = K[wi] if and only if C¢(w1) = Cr(w2) for any strictly convex f.

® We state for any strictly convex f since if it is true for one it is true for all.
In fact, we prove that w; and w, are equimeasurable.

® The two concepts of minimal flows are equivalent, wy; ~ wy, <= w1 ~s ws.

The proof is basically the following:

© Jensen's inequality 4 f strictly convex = equimeasurability of w; and ws.
© Brenier/Gangbo '03 approximation theorem:

VK there exists a sequence of permutations of squares {p,}52; s.t.

lim /Mg(x7pn(x))dx = //M Mg()gy)K(X,y)dxdy, for all g € C(M x M).

n— o0

Using this with equimeasurability we can “invert” K.
Roughly speaking, K is obtained from p. 1.
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Theorem (D /Drivas '22)

Let wy € L*°(M) and f strictly convex. There exists w* € X such that:
() Cr(w*) = min{Cf(w) : w e Oy, N{E=Ey}}

(i) w* is a minimal element (maximally mixed) in Oy, N {E = Eo}

(iii) There exists a bounded and monotone F such that w* = F(¢*)

(iv) There exists g continuous and convex, a, 3,7 € R, a? + % # 0 such that
Jg(w*) = min{Cg(w) + aCr(w) + BE(w) + v [, w : w e X}
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Theorem (D /Drivas '22)
Let wy € L*°(M) and f strictly convex. There exists w* € X such that:
() Cr(w*) = min{Cf(w) : w e Oy, N{E=Ey}}
(i) w* is a minimal element (maximally mixed) in Oy, N {E = Eo}
(iii) There exists a bounded and monotone F such that w* = F(¢*)
)

(iv

*

There exists g continuous and convex, a, B,v € R, a?® + B2 # 0 such that
Jg(w*) = min{Cg(w) + aCr(w) + BE(w) + v [, w : w e X}

o

® Shnirelman '93: Minimal elements are all steady states. Some of them might
not come from a variational problem though.

® Point (iv) is basically a Lagrange multiplier rule (variational problem in the
uncostrained space X).
Obtained with an abstract theorem of Rakotoson/Serre '93.
If o« # 0 then F stricly monotone.
a = 0 includes states with constant vorticity somewhere.
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Examples

® If wo = F(to) is constant or Arnold stable, i.e. 0 < F/(3)) < oo or
=\ < F'(v) < 0 where ) first eigenvalue of A, then

Qi (wo) = Ouy N {E = Eo} = {wo}.

Remark: Arnold stable states conform to the geometry of the domain,
Constantin/Drivas/Ginsberg '20 (see also Hamel/Nadirashvili '17-'19).
We show later that minimal flows need not inherit any domain symmetry.
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Examples

® If wo = F(to) is constant or Arnold stable, i.e. 0 < F/(3)) < oo or
=\ < F'(v) < 0 where ) first eigenvalue of A, then

Qi (wo) = Ouy N {E = Eo} = {wo}.

Remark: Arnold stable states conform to the geometry of the domain,
Constantin/Drivas/Ginsberg '20 (see also Hamel/Nadirashvili '17-'19).
We show later that minimal flows need not inherit any domain symmetry.

® |f wg = vazl aiXA;, ai < ait1, U;A; = M then

%*—{wEX,:/w—/wo,/(w—a;)+§/(wo—a,-)+,foralli}.
M M M M

Finite number of nonsmooth inequality constraints. When a; = —a, =1,
a; =0 for i > 3, the only constraint is |Jw||;c <1 (see also Sverak’s lecture
notes '11).
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o Assume that w* is a minimizer of Cr on O,,, N{E = Ep}.

o Let ¢ be a permutation of two small squares, say Q1, Qa, where w*|g, # w*|q,.
Define:

I K? I
Kéw=(1—-¢)w+e(wog), - - | — - -
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o Assume that w* is a minimizer of Cr on O,,, N{E = Ep}.

o Let ¢ be a permutation of two small squares, say Q1, Qa, where w*|g, # w*|q,.
Define:

Kéw=(1—-¢)w+e(wog), = 4 — }- -

o Compute that

d
$E(wa*)|g=o = /1(w* —w* 0 ¢)(Y* —Y* o ¢)dx.

o Claim: (w*(x) — w*(y))(¥*(x) —¥*(y)) > 0 (or < 0) for all x,y € M.
This, with Ay* = w*, imply 3 F bounded and monotone s.t. w* = F(¢*) .
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o Assume that w* is a minimizer of Cr on O,,, N{E = Ep}.

o Let ¢ be a permutation of two small squares, say Q1, Qa, where w*|g, # w*|q,.
Define:

Kéw=(1—-¢)w+e(wog), = 4 — }- -

o Compute that

d
$E(wa*)|g=o = /1(w* —w* 0 ¢)(Y* —Y* o ¢)dx.

o Claim: (w*(x) — w*(y))(¥*(x) —¥*(y)) > 0 (or < 0) for all x,y € M.
This, with Ay* = w*, imply 3 F bounded and monotone s.t. w* = F(¢*) .

o If claim not true, 3 ¢y, o s.t. E(K#'w*) > E(w*), E(K22w*) < E(w*).
Then 30 < A <1st. K. = AK? + (1 — \)K? satisfy E(K.w*) = E(w*).
But Cr(K.w*) < Cr(w*) since f strictly convex. Contradiction.
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@ Minimal flows not conforming to the domain symmetries
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Couette flow is minimal: w, = —1in T x [0,1]. Then v, = (x2,0).
It conforms to the domain symmetries. What happens if we perturb it?
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Couette flow is minimal: w, = —1in T x [0,1]. Then v, = (x2,0).
It conforms to the domain symmetries. What happens if we perturb it?
Linearized problem for perturbation around Couette: w = -1+ w

2
W+ x0,w=0 = w=w(x—xt,x) = W(t)L/Wdel
T

Orr 1907: (x2,0) + v(t) = (x2 + (w0),, ,0) strongly in L?. Inviscid damping.
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Couette flow is minimal: w, = —1in T x [0,1]. Then v, = (x2,0).
It conforms to the domain symmetries. What happens if we perturb it?
Linearized problem for perturbation around Couette: w = -1+ w

2
W+ x0,w=0 = w=w(x—xt,x) = W(t)L/Wdel
T

Orr 1907: (x2,0) + v(t) = (x2 + (w0),, ,0) strongly in L?. Inviscid damping.

=0 =60

t=120 1=1000

Launch m,= 4 - Echo is m,~2

Figure: Left: perturbation of the Couette flow, i.e. u = (x2,0), Shnirelman "13.
Right: experiment by Yu/Driscoll '02 in a pure electron plasma. See also Vanneste '98
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Nonlinear results

For the Couette flow:
® Lin/Zeng '10: there exists non-shear steady states s.t. ||W0||H%, <e.
Cats-eye structures. See also Castro-Lear '22.

® Bedrossian/Masmoudi '13: if wy small in Gevrey-27t, i.e Wy s ~ ce™ VIkltlkl
then nonlinear invicisd damping in T x R holds. Inviscid relaxation to
equilibrium by mixing.

® Deng/Masmoudi '18: instability of vorticity if wgy in Gevrey-2~. Inviscid
damping?

® lonescu/Jia '19: nonlinear inviscid damping in T x [0,1] and Gevrey-2.

Other stationary states:
® |onescu/Jia '20: axisymmetrization around point vortex.

® lonescu/Jia 20 and Masmoudi/Zhao '20: nonlinear inviscid damping for
strictly monotone shear flows.

® Coti Zelati/Elgindi/Widmayer '20: non-shear stationary states near
Kolmogorov (sin(x2),0) and Poiseulle (1 — y2,0) flows.

® M. Nualart '22: non-zonal stationary states around zonal flows in the sphere.
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Theorem (D /Drivas '22)
Let M =T x [0,1], wp € L(M) and

Then, for any § >0, 3¢ € C*° s.t.

and for which the set @* N{E=E(¢)} n{Lm = Lm(&)} contains no shear flows.

Lm(w) 2:/Me1'UdX:/JTU1(X1,1)dX1+/ xow(x)dx.

M

€ — Wb”Ll <4

V.

Starting from the field £, we can construct non-shear minimal flows (hence
steady) with our variational problem.

In particular, Q. (&) does not contain shear flows. Choosing wp = —v(y), we
show that convergence back to a shear is not possible for €.

The field £ is explicit and not steady (details later).
Analogous result if M is an annulus. In the disk?
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background. Namely,

2

€ — whllre ~e™

)

In this case wp = sin(y). We choose ¢ as highly peaked vortices embedded in the

|supp(§ — wp)| < €%,
E(£) — E(ws) ~ 6°|log(e)|,

ILm(§) — Lm(ws)| < 0.
We are perturbing the background wp with an approximation of point vortices.

M. Dolce
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In this case wp = sin(y). We choose ¢ as highly peaked vortices embedded in the
background. Namely,

€ — wpllie =72, |supp(§ — ws)| S €2,

E(§) — E(ws) ~ 8?[log(e)l,  [Lm(€) — Lm(ws)| < 6.

We are perturbing the background wp with an approximation of point vortices.

Main idea: shear flows are 1D objects for which the Biot-Savart law is non-
singular, so energy O(1). Approximated point vortices exploit the singularity
of Biot-Savart in 2D, so energy O(|log(¢)|). They cannot be sheared out
due to energy conservation and control on L! norms.
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< Choose
£ = wp + e 21 (x), AL = &%
< Compute that

1€ —wsllp S 6, E(€) = E(§ — ws) = 6% log(e)]
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© Choose
E=wp+0eIa(x),  |A]=¢%
< Compute that
1€ —wsllp S 6, E(€) = E(§ — ws) = 6% log(e)]

o Assume that Ts = Fs(x0) € O N {E = E(€)} N {Lm = Lm(€)}.
Using the characterizations of @* worst case scenario is

O(n2) onAup, |Asl <12,

O<puxl.
0(1)  on[0.1]\ A, :

Ws(x2) = {
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© Choose
E=wp+0e7%a(x),  |Af=e%
o Compute that
1€ —wblln S8, E(€) = E(€ — ws) = 67| log(e)|
o Assume that @y = Ts(x2) € Or N {E = E(€)} N {Lm = Lm(€)}.

Using the characterizations of O, , worst case scenario is

_ o(u2 Ao, |Anl < u?
wg(xz)%{ (02) on Ay (Al <p?

0(1) on [03 1] \ A;tzv
This lead to a contradiction, namely, let G be the Green's function on T x [0, 1]
- 1 - -
il =5 [| 6 yBle)lm)dxdy = 0(1) < 8 log(:)] ~El¢]
MxM

Remark: Conservation of momentum is crucial to avoid shear flows s.t.
u = (v(x2) + |log(¢)|,0). Vorticity invisible to such shift but not momentum.
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A future direction
Obtain minimal flows dynamically. With Drivas and Galeati we consider

Ow + u-Vw = ru-V(u-Vw)
u=V=iy, A = w.
This is related to anticipated vorticity model Sadourny/Basdevant '80s, recently
considered by Gay-Balmaz/Holm '12 as well.
® The energy is conserved, namely % fM wip = 0.
® w = F(%) are steady states for this model.
® Strictly convex Casimirs are “dissipated”

d

= dx+n”#f” (u- Vo) H2=0

® Nice stochastic representation dX; = u:(X;)dt + vV2ku:(X;) o dB;
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A future direction
Obtain minimal flows dynamically. With Drivas and Galeati we consider

Ow + u-Vw = ru-V(u-Vw)
u=V=iy, A = w.
This is related to anticipated vorticity model Sadourny/Basdevant '80s, recently
considered by Gay-Balmaz/Holm '12 as well.
® The energy is conserved, namely % fM wip = 0.
® w = F(%) are steady states for this model.
® Strictly convex Casimirs are “dissipated”

d

= dx+1~c”#f” (u- Vo) H2=0

Nice stochastic representation dX; = uy(X:)dt + v2ku(X;) o dB;
Yudovich type theory (global well-posedness in L>°)?

Long time-behavior around particular steady states?
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