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Université Grenoble Alpes, Institut Fourier

M. Dolce Maximally mixed equilibria 1 / 23



Outline

1 Introduction

2 2D Euler and area preserving rearrangements

3 Maximally mixed equilibria
Proof that minimal are steady

4 Minimal flows not conforming to the domain symmetries

M. Dolce Maximally mixed equilibria 1 / 23



Outline

1 Introduction

2 2D Euler and area preserving rearrangements

3 Maximally mixed equilibria
Proof that minimal are steady

4 Minimal flows not conforming to the domain symmetries

M. Dolce Maximally mixed equilibria 1 / 23



The 2D Euler equation

∂tω + u · ∇ω = 0, in M ⊂ R2 bounded (simply connected),

u = ∇⊥ψ, ∆ψ = ω,

ω|t=0 = ω0, u · n = 0.

Given ω0 ∈ L∞(M), we have

ω(t) = ω0 ◦ Φ−1
t ,

d

dt
Φt = u(Φt , t), Φ0 = id,

where Φt is a volume preserving homeomorphism.

• Yudovich ’63: existence (Wolibner ’33) and uniqueness of weak solutions on
X = {ω ∈ L∞(M) : ∥ω∥L∞ ≤ ∥ω0∥L∞}.

• ω(tj)
∗
⇀ ω̄ along subsequence tj → ∞ for some ω̄, namely

ˆ
M

g(x)ω(tj , x)dx →
ˆ
M

g(x)ω̄(x)dx , for any g ∈ L1(M).
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Robust invariants: Kinetic energy

E(ω) :=
1

2

ˆ
M

|u|2dx = −1

2

ˆ
M

ωψdx , ∆ψ = ω,

E(ω(t)) = E(ω0), and E(ω0) = lim
tj→∞

E(ω(tj)) = E(ω̄)

If M is a disk or channel also angular or linear momentum are robust invariants.

Fragile invariants: by the transport structure, ω(t) = ω0 ◦ Φ−1
t we have

Casimirs : Cf (ω(t)) :=
ˆ
M

f (ω(t))dx =

ˆ
M

f (ω0◦Φ−1
t )dx = Cf (ω0), for t <∞.

In general, Cf (ω0) = limtj→∞ Cf (ω(tj)) ̸= Cf (ω̄)
If f is convex, by l.s.c. we have

Cf (ω̄) ≤ lim inf
tj→∞

Cf (ω(tj)) = Cf (ω0).

Mixing: Cf (ω̄) < Cf (ω0).
What can be said at t = ∞ accounting only for the invariants?
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Example

• Let M = T2. Then ω(x) =
∑

k∈Z2 ω̂ke
ik·x .

• Suppose that ω̄ is s.t. ̂̄ωk = 0 for |k | < N.

• Since ∥ω̄∥L2 ≤ ∥ω0∥L2 , if N ≫ 1, we get

E(ω̄) =
1

(2π)2

∑
|k|≥N

1

|k |2
|̂̄ωk |2 ≲

1

|N|2
∥ω̄∥2L2 ≲

1

|N|2
∥ω0∥2L2 < E(ω0).

But E(ω̄) = E(ω0). So N cannot be too large.

Some low frequency piece must survive. Large spatial scale structures!
Inverse cascade, Kraichnan ’67.

If ω̂k = 0 for all |k| > N, then ω is stationary (Elgindi/Hu/Šverák ’15).
Something which is not steady must always have high frequency part.
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Figure: Top: Numerics by Constantinou/Drivas ’21. Bottom: Schecter/Dubin
/Fine/Driscoll ’99 (a) experiment of pure electron plasma (b) numerics of 2D Euler.
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Modin/Viviani ’21 numerics on Zeitlin model. Nice idea: split the vorticity
ω = ωs + ωr with ωs average along the streamlines γ(h) = {x : ψ(x) = h}

ωs(h) =

ˆ
γ(h)

ω

|∇ψ|
dℓ

• ωs is large scale, contains most of the energy but only a fraction of enstrophy.

• ωr is small scale, very little energy but more enstrophy w.r.t ωs .
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Statistical mechanics approach for
N-point vortices. Clustering of likely
signed vortices and negative
“temperature” states. But
[N → ∞,T → ∞] ̸= 0. See
Eyink/Sreenivasan ’06.

M. Dolce Maximally mixed equilibria 7 / 23



Statistical hydrodynamics after Onsager

• Kraichnan ’67, Joyce/Montgomery ’70, Caglioti/Lions/Marchioro/Pulvirenti,
Chavanis, Eyink/Spohn ’90s...
See review of Bouchet/Venaille ’12.
For example, Kraichnan predicts that the most probable state minimizes the
enstrophy in X ∩ {E = E0}. Dynamically accessible?

• Miller, Robert, Sommeria ’90s: Finite dimensional approximation of 2D Euler
by discretizing vorticity. Stat. mech. approach where permutation of squares
generates the accessible states. They obtain a variational problem taking into
account all finite time conserved quantities.

• Turkington ’99: Fourier truncation of 2D Euler in T2 with the Fejèr kernels:

FN(x) = (2π)−2
∑
|k|≤N

(1− |k1|/N)(1− |k2|/N)eik·x

KN [ω] := FN ∗ ω.
This kernel has some special properties.
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Two conjectures about the infinite time-behaviour
Statements from Drivas/Elgindi ’22.

Šverák’s conjecture ’11: Generic initial data ω0 ∈ L∞(M) gives rise to
inviscid incompressible motions whose vorticity orbits {ω(t)}t∈R are
not precompact in L2(M).

Some mixing, e.g. ∥ω∥L2 < ∥ω0∥L2 , is happening.
Vortex merging is consistent with this conjecture. Irreversibility at infinite times.

Shnirelman’s conjecture ’13: For any initial data ω0 ∈ L∞(M), the col-
lection of L2(M) weak limits of the orbits {ω(t)}t∈R consists of vorticities
whose orbits are precompact in L2(M).

After t = ∞, you cannot mix more. Euler is “maximally mixing”.
This is consistent with predictions of statistical hydro of reaching a stationary
state. It is also true if we reach a periodic or quasi periodic state.

See Bedrossian/Masmoudi ’13 (and related works) and Elgindi/Murray/A.R. Said
’22 A.R. Said/Jeong ’23.
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Area preserving rearrangements and weak-* closure

For 2D Euler, ω(t) = ω0 ◦ Φ−1
t is a rearrangement of ω0. Define

Oω0 = {ω0 ◦ φ : φ area preserving diffeo of M}.

• Consider the weak-* closure of this set.
Namely, for ω0 ∈ L∞, let {φn}∞n=1. Then

ω0 ◦ φn
∗
⇀ ω̄ ∈ Oω0

∗
(also ω0 ◦ φn

L2

⇀ ω̄)

• The set Oω0

∗
is convex and can be characterized (Chong, Ryff... ’60-’70s)

Oω0

∗
=

{
ω ∈ X ,

ˆ
M

ω =

ˆ
M

ω0,

ˆ
M

f (ω) ≤
ˆ
M

f (ω0) for all convex f

}
,

where X = {∥ω∥L∞ ≤ ∥ω0∥L∞}.
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Chong, Ryff, 60s-70s and Brenier/Gangbo ’03 observed also that

Oω0

∗
= {ω ∈ X : ω = K [ω0], K bistochastic}

where K is a bistochastic operator if:

• K : M ×M → R is such that

K ≥ 0,

ˆ
M

K (x , ·)dx =

ˆ
M

K (·, y)dy = 1,

K [ω](x) =

ˆ
M

K (x , y)ω(y)dy .

Examples:

• Kmix = 1/|M| and Kmix [ω] =
´
M
ω/|M|. Complete mixing.

• Kφ = δ(y − φ(x)) and Kφ[ω] = ω ◦ φ, for any area preserving map φ.

• If K1,K2 bistochastic, then also K̃ = λK1 + (1− λ)K2, λ ∈ [0, 1].

• KN [ω] = FN ∗ ω where FN is the Féjer kernel (Turkington)

• Kγ(x , y) = δ(y − γ(x))/|∇ψ| the Modin/Viviani streamlines projection.
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Oω0

∗
=

{
ω ∈ X ,

ˆ
M

ω =

ˆ
M

ω0,

ˆ
M

f (ω) ≤
ˆ
M

f (ω0) for all convex f

}
,

= {ω ∈ X : ω = K [ω0], K bistochastic}

where X = {∥ω∥L∞ ≤ ∥ω0∥L∞}.

This set is too large to be relevant for Euler, no energy conservation.
If
´
ω0 = 0 then Kmix [ω0] = 0 ∈ Oω0

∗
(complete mixing in T2 for instance)

All the infinite time limits of 2D Euler are contained in:

Ω+(ω0) =
⋂
s≥0

{ω0 ◦ Φ−1
t , t ≥ s}

∗
⊆ Oω0

∗ ∩ {E(ω) = E(ω0)}.

Shnirelman ’93: found special steady states of 2D Euler in Oω0

∗ ∩ {E(ω) =
E(ω0)} as a consequence of Zorn’s lemma.
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Minimal elements or maximally mixed states

Oω0

∗
= {ω ∈ X : ω = K [ω0], K bistochastic}

=

{
ω ∈ X ,

ˆ
M

ω =

ˆ
M

ω0,

ˆ
M

f (ω) ≤
ˆ
M

f (ω0) for all convex f

}
.

We have two natural partial ordering. Let ω1, ω2 ∈ Oω0

∗ ∩ {E = E0}:
(1) Shnirelman ’93: ω1 ⪯S ω2 if ∃ K bistochastic s.t. ω1 = Kω2.

(2) D/Drivas ’22: ω1 ⪯ ω2 if ∃ a strictly convex f s.t. Cf (ω1) ≤ Cf (ω2).

Minimal elements: An ω∗ ∈ Oω0

∗ ∩ {E = E0} is minimal if for all ω ∈
Oω0

∗ ∩ {E = E0} s.t. ω ⪯ ω∗ then ω∗ ⪯ ω. We say ω ≃ ω∗ (or ⪯S ,≃S).

Minimal elements are maximally mixed.
Decrease of any Casimir Cf requires a change of energy.

M. Dolce Maximally mixed equilibria 13 / 23



Minimal elements or maximally mixed states

Oω0

∗
= {ω ∈ X : ω = K [ω0], K bistochastic}

=

{
ω ∈ X ,

ˆ
M

ω =

ˆ
M

ω0,

ˆ
M

f (ω) ≤
ˆ
M

f (ω0) for all convex f

}
.

We have two natural partial ordering. Let ω1, ω2 ∈ Oω0

∗ ∩ {E = E0}:
(1) Shnirelman ’93: ω1 ⪯S ω2 if ∃ K bistochastic s.t. ω1 = Kω2.

(2) D/Drivas ’22: ω1 ⪯ ω2 if ∃ a strictly convex f s.t. Cf (ω1) ≤ Cf (ω2).

Minimal elements: An ω∗ ∈ Oω0

∗ ∩ {E = E0} is minimal if for all ω ∈
Oω0

∗ ∩ {E = E0} s.t. ω ⪯ ω∗ then ω∗ ⪯ ω. We say ω ≃ ω∗ (or ⪯S ,≃S).

Minimal elements are maximally mixed.
Decrease of any Casimir Cf requires a change of energy.

M. Dolce Maximally mixed equilibria 13 / 23



Equivalence of the two definitions

Lemma (D/Drivas ’22)

Let ω2 ∈ X , K bistochastic and ω1 = K [ω2]. There exists K̃ bistochastic s.t.

ω2 = K̃ [ω1] if and only if Cf (ω1) = Cf (ω2) for any strictly convex f .

• We state for any strictly convex f since if it is true for one it is true for all.
In fact, we prove that ω1 and ω2 are equimeasurable.

• The two concepts of minimal flows are equivalent, ω1 ≃ ω2 ⇐⇒ ω1 ≃S ω2.

The proof is basically the following:
⋄ Jensen’s inequality + f strictly convex =⇒ equimeasurability of ω1 and ω2.
⋄ Brenier/Gangbo ’03 approximation theorem:
∀K there exists a sequence of permutations of squares {pn}∞n=1 s.t.

lim
n→∞

ˆ
M

g(x , pn(x))dx =

¨
M×M

g(x , y)K (x , y)dxdy , for all g ∈ C (M ×M).

Using this with equimeasurability we can “invert” K .
Roughly speaking, K̃ is obtained from p−1

n .
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Theorem (D/Drivas ’22)

Let ω0 ∈ L∞(M) and f strictly convex. There exists ω∗ ∈ X such that:

(i) Cf (ω∗) = min{Cf (ω) : ω ∈ Oω0

∗ ∩ {E = E0}}
(ii) ω∗ is a minimal element (maximally mixed) in Oω0

∗ ∩ {E = E0}
(iii) There exists a bounded and monotone F such that ω∗ = F (ψ∗)

(iv) There exists g continuous and convex, α, β, γ ∈ R, α2 + β2 ̸= 0 such that
Jg (ω

∗) = min{Cg (ω) + αCf (ω) + βE(ω) + γ
´
M
ω : ω ∈ X}.

• Shnirelman ’93: Minimal elements are all steady states. Some of them might
not come from a variational problem though.

• Point (iv) is basically a Lagrange multiplier rule (variational problem in the
uncostrained space X ).
Obtained with an abstract theorem of Rakotoson/Serre ’93.
If α ̸= 0 then F stricly monotone.
α = 0 includes states with constant vorticity somewhere.
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Examples

• If ω0 = F (ψ0) is constant or Arnold stable, i.e. 0 < F ′(ψ) <∞ or
−λ1 < F ′(ψ) < 0 where λ1 first eigenvalue of ∆, then

Ω+(ω0) = Oω0

∗ ∩ {E = E0} = {ω0}.

Remark: Arnold stable states conform to the geometry of the domain,
Constantin/Drivas/Ginsberg ’20 (see also Hamel/Nadirashvili ’17-’19).
We show later that minimal flows need not inherit any domain symmetry.

• If ω0 =
∑N

i=1 aiχAi , ai < ai+1, ∪iAi = M then

Oω0

∗
=

{
ω ∈ X , :

ˆ
M

ω =

ˆ
M

ω0,

ˆ
M

(ω − ai )+ ≤
ˆ
M

(ω0 − ai )+, for all i

}
.

Finite number of nonsmooth inequality constraints. When a1 = −a2 = 1,
ai = 0 for i ≥ 3, the only constraint is ∥ω∥L∞ ≤ 1 (see also Šverák’s lecture
notes ’11).
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⋄ Assume that ω∗ is a minimizer of Cf on Oω0

∗ ∩ {E = E0}.
⋄ Let ϕ be a permutation of two small squares, say Q1,Q2, where ω

∗|Q1 ̸= ω∗|Q2 .
Define:

Kϕ
εQ2

Q1
Kϕ
ε ω = (1− ε)ω + ε(ω ◦ ϕ),

⋄ Compute that

d

dε
E(Kϕ

ε ω
∗)|ε=0 =

ˆ
Q1

(ω∗ − ω∗ ◦ ϕ)(ψ∗ − ψ∗ ◦ ϕ)dx .

⋄ Claim: (ω∗(x)− ω∗(y))(ψ∗(x)− ψ∗(y)) ≥ 0 (or ≤ 0) for all x , y ∈ M.
This, with ∆ψ∗ = ω∗, imply ∃ F bounded and monotone s.t. ω∗ = F (ψ∗) .

⋄ If claim not true, ∃ ϕ1, ϕ2 s.t. E(Kϕ1
ε ω∗) > E(ω∗), E(Kϕ2

ε ω∗) < E(ω∗).

Then ∃ 0 < λ < 1 s.t. K̃ε = λKϕ1
ε + (1− λ)Kϕ2

ε satisfy E(K̃εω
∗) = E(ω∗).

But Cf (K̃εω
∗) < Cf (ω∗) since f strictly convex. Contradiction.
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Couette flow is minimal: ω∗ = −1 in T× [0, 1]. Then v∗ = (x2, 0).
It conforms to the domain symmetries. What happens if we perturb it?

Linearized problem for perturbation around Couette: ω = −1 + w

∂tw + x2∂x1w = 0 =⇒ w = w0(x1 − x2t, x2) =⇒ w(t)
L2

⇀

ˆ
T
w0dx1

Orr 1907: (x2, 0) + v(t) → (x2 + ⟨v0⟩x1 , 0) strongly in L2. Inviscid damping.

Figure: Left: perturbation of the Couette flow, i.e. u = (x2, 0), Shnirelman ’13.
Right: experiment by Yu/Driscoll ’02 in a pure electron plasma. See also Vanneste ’98
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Nonlinear results

For the Couette flow:

• Lin/Zeng ’10: there exists non-shear steady states s.t. ∥w0∥
H

3
2
− ≤ ε.

Cats-eye structures. See also Castro-Lear ’22.

• Bedrossian/Masmoudi ’13: if w0 small in Gevrey-2+, i.e ŵ0,k ∼ εe−
√

|k1|+|k2|,
then nonlinear invicisd damping in T× R holds. Inviscid relaxation to
equilibrium by mixing.

• Deng/Masmoudi ’18: instability of vorticity if w0 in Gevrey-2−. Inviscid
damping?

• Ionescu/Jia ’19: nonlinear inviscid damping in T× [0, 1] and Gevrey-2.

Other stationary states:

• Ionescu/Jia ’20: axisymmetrization around point vortex.

• Ionescu/Jia ’20 and Masmoudi/Zhao ’20: nonlinear inviscid damping for
strictly monotone shear flows.

• Coti Zelati/Elgindi/Widmayer ’20: non-shear stationary states near
Kolmogorov (sin(x2), 0) and Poiseulle (1− y2, 0) flows.

• M. Nualart ’22: non-zonal stationary states around zonal flows in the sphere.
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Theorem (D/Drivas ’22)

Let M = T× [0, 1], ωb ∈ L∞(M) and

Lm(ω) :=

ˆ
M

e1 · u dx =

ˆ
T
u1(x1, 1)dx1 +

ˆ
M

x2ω(x)dx .

Then, for any δ > 0, ∃ ξ ∈ C∞ s.t.

∥ξ − ωb∥L1 ≤ δ

and for which the set Oξ
∗ ∩ {E = E(ξ)} ∩ {Lm = Lm(ξ)} contains no shear flows.

• Starting from the field ξ, we can construct non-shear minimal flows (hence
steady) with our variational problem.

• In particular, Ω+(ξ) does not contain shear flows. Choosing ωb = −v(y), we
show that convergence back to a shear is not possible for ξ.

• The field ξ is explicit and not steady (details later).

• Analogous result if M is an annulus. In the disk?
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In this case ωb = sin(y). We choose ξ as highly peaked vortices embedded in the
background. Namely,

∥ξ − ωb∥L∞ ≈ ε−2, |supp(ξ − ωb)| ≲ ε2,

E(ξ)− E(ωb) ≈ δ2| log(ε)|, |Lm(ξ)− Lm(ωb)| ≲ δ.

We are perturbing the background ωb with an approximation of point vortices.

Main idea: shear flows are 1D objects for which the Biot-Savart law is non-
singular, so energy O(1). Approximated point vortices exploit the singularity
of Biot-Savart in 2D, so energy O(| log(ε)|). They cannot be sheared out
due to energy conservation and control on L1 norms.
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⋄ Choose

ξ = ωb + δε−2
1Aε

(x), |Aε| = ε2.

⋄ Compute that

∥ξ − ωb∥L1 ≲ δ, E(ξ) ≈ E(ξ − ωb) ≈ δ2| log(ε)|

⋄ Assume that ω̃s ≡ ω̃s(x2) ∈ Oξ
∗ ∩ {E = E(ξ)} ∩ {Lm = Lm(ξ)}.

Using the characterizations of Oξ
∗
, worst case scenario is

ω̃s(x2) ≈

{
O(µ−2) on Ãµ2 , |Ãµ2 | ≤ µ2,

O(1) on [0, 1] \ Aµ2 ,
0 < µ≪ 1.

This lead to a contradiction, namely, let G be the Green’s function on T× [0, 1]

E[ω̃s] = −1

2

¨
M×M

G (x , y)ω̃s(x2)ω̃s(y2)dxdy = O(1) ≪ δ2| log(ε)| ≈ E[ξ].

Remark: Conservation of momentum is crucial to avoid shear flows s.t.
u = (v(x2) + | log(ε)|, 0). Vorticity invisible to such shift but not momentum.
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A future direction

Obtain minimal flows dynamically. With Drivas and Galeati we consider

∂tω + u · ∇ω = κu · ∇(u · ∇ω)
u = ∇⊥ψ, ∆ψ = ω.

This is related to anticipated vorticity model Sadourny/Basdevant ’80s, recently
considered by Gay-Balmaz/Holm ’12 as well.

• The energy is conserved, namely d
dt

´
M
ωψ = 0.

• ω = F (ψ) are steady states for this model.

• Strictly convex Casimirs are “dissipated”

d

dt

ˆ
M

f (ω)dx + κ
∥∥∥√f ′′(ω)(u · ∇ω)

∥∥∥2
L2

= 0

• Nice stochastic representation dXt = ut(Xt)dt +
√
2κut(Xt) ◦ dBt

• Yudovich type theory (global well-posedness in L∞)?

• Long time-behavior around particular steady states?
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