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Observe - Question - Represent 	
Leonardo da Vinci 

(1452-1519) 
introduced the word  

turbolenza 

Self-portrait :  
`Old man and vortices’ 

Windsor Castle Collection 



Clouds tracing the air flow 
and plancton tracing the water flow 

on the coast of California 



Vortices observed from Challenger 
at the surface of the Mediterranea  

Clouds tracing the vortices emitted 
In the wake of Guadalupe Islands 



  Vortices observed in Jupiter’s atmosphere 



Smoke tracing the air flow to visualize 
 the vortices emitted by a dragon fly 

Observe - Question - Represent 	

Smoke tracing the air flow to visualize 
 the vortices emitted by a dragon fly 



Flow variables: v velocity, ω vorticity, F external forces. 
Fluid parameters:  ν kinematic viscosity and density ρ=1. 

Plus initial and boundary conditions. 

              Mathematicians and `natural philosophers’, such as 
           d’Alembert (1752), Euler (1758), Navier (1822), Stokes (1845), 
                      designed the fundamental equations of fluid mechanics  

            from the conservation of the flow momentum  
              and the hypothesis of the fluid incompressibility. 

Turbulence: limit where nonlinear transport dominates linear dissipation. 

Fundamental principles and equations

€ 

⇒
Navier-Stokes equations : 

Euler equations: fluid is inviscid              , therefore no energy dissipation. 
 

with	



For the turbulent regime we do not even know  
if their solutions exist and are unique for all times 

	

In the absence of anything better to do, 
we try to break ground by looking for approximate solutions, 

which we explore by numerical experiment. 

How to solve Navier-Stokes equations ?

€ 

⇒



Periodic 2D turbulent flow without forcing 

Time 
evolution 

of the 
vorticity 

field 
from 

random 
Initial 

conditions, 
without 
external 
forcing 

ω min ω max 

Resolution 
N=5122 

M. F., 1988�
Fluid Dynamics

Research, 3

Gaussian 
random 

initial 
condition 

 
Pseudo- 
spectral  
method 

with a 2/3 
dealiasing 



				

Kai Schneider
and M. F., 2005

Phys. Rev. Lett., 95

Gaussian 
random 

initial 
condition 

 
Pseudo- 
spectral  
method 

with volume 
penalization 

Résolution 
N=10242 

Confined 2D turbulent flow without forcing 



What is turbulence ?

   Hypotheses : 
 

-  we suppose the fluid to be a continuous medium if the scale of  
     the observer it is much larger than the mean free path of molecules, 
-  Here, we consider the fluid to be incompressible, i.e., non-divergent. 

Turbulence is a state that  afluid flow reaches  
when it becomes unstable and highly fluctuating. 

	Etymology of the word ‘turbulence’  
     turba-ae : crowd, mob, 

                       turbo-inis : vortex. 
	

    A turbulent flow is a mob of vortices interacting together 
on a wide range of temporal and spatial scales. 

Fluid flows reach the fully-developed regime 
when they become highly mixing, 

which corresponds to strong turbulence. 

€ 

⇒



								

The different flow regimes
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for Re > 105 



G. I. Taylor, 1938 
 
 
 

 ‘The fact that small quantities of very high frequency disturbances appear,  
and increase as the speed increases, seems to confirm the view frequently 

put forward by the author that the dissipation of energy is due chiefly to  
the formation of very small regions where the vorticity is very high.’ 

 
 
 

Turbulent flows are intermittent,  
i.e., the sparser their fluctuations the stronger they are. 

Taylor 1938, 
‘The spectrum of turbulence’, 

Proc. Royal Soc. London A, 164 

€ 

⇒
We should focus on the vorticity field and study 

 how intermittent structures, such as vortices, emerge and interact.  
The Fourier representation is adequate to analyze waves, but not vortices. 

Vortices should be analyzed in physical space and in wavelet space. 



WHAT IS THE WAVELET 
REPRESENTATION ? 



 'If we consider a musical piece and that a note, for instance an A, 
appears at least once in it, the harmonic analysis will represent the 
corresponding frequency with a certain amplitude and a certain phase, 
but without localizing the A in time. However, it is obvious that during 
this musical piece there are instant for which we do not hear the A note. 
Although the Fourier representation is mathematically correct, because 
the phases of nearby notes are organized in such a way that they 
destroy by interference the A when we do not hear it or reinforce it, also 
by interference, when we hear it, but, if there is in this conception a skill 
which honors mathematical analysis, we should not hide the fact that 
there is a deformation of reality: indeed, when we do not hear the A, the 
genuine reason is that the A note has not been emitted.’ 

Jean Ville, 
Théorie et application de la notion de signal analytique, 

Cables et transmissions, 1948

An adequate representation for music 



Continuous Fourier transform 

Analysis 

Synthesis 

Parseval’s identity (energy conservation) 

is integrable and square integrable 



James William Cooley 
(1926-2016)  

John Tukey 
(1915-2000)  

You can compute the Fourier transform 
of a signal sampled on N points 

in N Log2 N operations  

James Cooley and John Tukey, 
an algorithm for machine calculation 

of complex Fourier series, 
Math Comput., 19, 1965



Continuous wavelet transform 

Analysis 

Synthesis 

Parseval’s identity (energy conservation) 



Jean Morlet 
(1931-2007)  

Alex Grossmann 
(1930-2019)  

A. Grossmann and J. Morlet, 1984,
Decomposition of Hardy functions 
into square integrable wavelets of 

constant shape,
 SIAM J. Math. Anal., 15(4)



Fourier versus wavelet transform 

Wavelet representation 
is optimal regarding 

the uncertainty principle 
 Δx	Δk	=	A	>	0	

M. F.,  C. R. Acad. Sci. 
Paris, 1988

Modulation 
Fourier, 1822 

Translation and modulation 
Windowed Fourier, Gabor, 1946 

Translation and dilatation  
Morlet, 1981 

Δx Δk = A 
Δx Δk = A 

Δx Δk = A 



Complex-valued wavelets 

Wavelet 
in physical 
space 

Wavelet 
in spectral 
space 

Morlet’s wavelet       

Paul’s wavelet 
       



Generation of the wavelet ‘family’ 

Physical space Spectral space

Δx Δk > A 

€ 

ψ ji

€ 

ˆ ψ ji

€ 

j = 3

€ 

j = 4

€ 

j = 5

€ 

j = 6

€ 

j = 7
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i
Δk 

Δx 
Small scales 

Large scales 



Fourier	
	spectrum	

Function to analyze 

Large	scales	

 

Modulus of the wavelet coefficients 
    

Small	scales	

Wavelet	
scalogram	



Small 
scales 

Large 
scales 

Logarithm 
of the scale 

2D continuous 
wavelet 

representation 



				Orthogonal	wavelet	representa0on 

Wavelet	
coefficients 

 log of scale j 

 position i                                                           

  

€ 

ψ ji

N = 512 = 29 

Mallat, 2008
A wavelet tour of signal processing 

Academic Press

		Wavelets	
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Ingrid Daubechies Stéphane Mallat  

S. Mallat, 1989, 
A theory for multiresolution signal 

decomposition: the wavelet representation, 
IEEE Trans. In pattern anal., 11, 7

The orthogonal wavelet transform of a signal sampled 
on N points can be computed in N operations  

I. Daubechies, 1988, 
Orthogonal bases of compactly 

supported functions,
Comm. In Pure Applied Math., 41, 7



Continuous / orthogonal wavelets 
                           Analyzing functions are       
                           translates and dilates 
              of an oscillating function (of zero mean) 

Well localized in both space and wavenumber 

           

        Continuous wavelets       Orthogonal wavelets 

•  Translates and dilates  
  vary continuously 
•  Redundant representation 

•  Translates and dilates are 
  on a discrete dyadic grid 
•  Orthogonal basis 

•  Coefficients are easy to read 
•  Unfold in both space and scale 
•  For analysis 

•  Coefficients not easy to read 
•  sampled on a dyadic grid 
•  For filtering and compression 

 j,i(x
0) = 2j/2 (2jx0 � i)

 

l,~x

(x0) =
1

l

n/2
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~x

0 � ~x

l

)

f̃(l, ~x) = h 
l,~x

|fi



HOW TO ANALYZE 
TURBULENT FLOWS ? 



How to decompose turbulent flows ? 
‘In 1938 Tollmien and Prandtl suggested that turbulent fluctuations might 
consist of two components, a diffusive and a non-diffusive. Their ideas that 
fluctuations include both random and non random elements are correct, but 
as yet there is no known procedure for separating them.’ 

Dryden, 1948, Adv. Appl. Mech., 1           

  mean + turbulent fluctuations 
= mean + non random + random 

= mean + coherent structures + incoherent noise 

M. F., Schneider, Kevlahan, 1999,
Phys. Fluids, 11 (8)

M. F.,  1992
Ann. Rev. Fluid Mech., 24

M. F., Pellegrino, Schneider, 2001 
Phys. Rev. Lett., 87 (5)

€ 

⇒ Coherent Vorticity Simulation (CVS) 

turbulent dynamics 
= chaotic non diffusive + stochastic diffusive 

= inviscid nonlinear dynamics + turbulent dissipation 

€ 

⇒ Coherent Vorticity Extraction (CVE) 



Linear extraction of a coherent structure

To extract a coherent structure which is localized in x0  
we retain all wavelet coefficients in its influence cone, 

which contains to all wavelets localized in x0. 



Example of linear extraction in 2D

+ 

The field with one vortex The field without one vortex 

The vorticity field 

M. F., 1993
Probability Concepts 

in Physical Oceanography, 
Hawaii University Press, 131-159



Nonlinear extraction of coherent structures

To extract the most significant stuctures we retain the  
wavelet coefficients whose modulus is 
 larger than a given threshold value. 



Example of nonlinear extraction in 2D

+ 
coherent structures Incoherent background 

original field 

M. F., 1993
Probability Concepts 

in Physical Oceanography, 
Hawaii University Press, 131-159



A better way to extract coherent structures 
 

     Since there is not yet a universal definition of coherent structures  
    which emerge out of turbulent fluctuations, 

we adopt an apophetic method : 
instead of defining what they are, we define what they are not. 

 
 
 
 

 
 
 
 
 

Choosing the simplest hypothesis as a first guess, 
 we suppose we want to eliminate an additive Gaussian white noise 

 and for this we use a nonlinear wavelet filtering. 
 
 

€ 

⇒

M.F., Schneider et al., 2003 
Phys. Fluids, 15 (10) 

Extracting coherent structures becomes a denoising problem,  
not requiring any hypotheses on the structures themselves  

but only on the noise to be eliminated. 

For this, we propose the minimal statement :           
   ‘Coherent structures are not noise’ 

Azzalini, M. F., Schneider, 2005 
ACHA, 18 (2) 





Coherent vorticity 
99% E 
80% Z 

Incoherent vorticity 
1% E 
20% Z 

Total vorticity 
100% E 
100% Z 

2%	N	 98%	N	

ωimin ωmax	

PIV 
N=1282 

Wavelet filtering of a 2D turbulent flow  



Advection of a passive scalar 

  DNS 
N=5122 

Incoherent flow  Coherent flow Total flow 

= + 

0.2%N 
99.8%E 
93.6%Z 

99.8%N 
0.2%E 
6.4%Z 

Beta,Schneider, 
M.F., 2003, 
Nonlinear 

Sci. Num. Simul., 8 

Transport	by	the		
coherent	flow		

and	
turbulent	

dissipa?on	by	the	
incoherent	flow	



by the total flow by the coherent flow by the incoherent flow 

Advection of point particles 

Diffusion by the noise as a Brownian motion 

Transport by the vortices 

= + 

0.2 %  of coefficients 
99.8 %  of kinetic energy 
93.6 %  of enstrophy 

99.8 %  of coefficients 
0.2 %  of kinetic energy  
6.4 %  of enstrophy 

  DNS 
N=5122 

Beta,Schneider, 
M.F., 2003, 
Nonlinear 

Sci. Num. Simul., 8 



               

 Reλ
= Re1/2	

Vassilicos, Ann. Rev. Fluid Mech., 47, 2015

Energy 
dissipation 

rate 

Laboratory experiment of 3D turbulence 

Strong turbulence Weak turbulence 

    

       For             or                                        
energy dissipation does not vanish 
        but becomes constant    

€ 

Re→ +∞

€ 

ν → 0



Numerical experiment of 3D turbulence   

Kaneda et al., 2003
Phys. Fluids, 12, 21-24

 Reλ 

                     20483 40963 

1200 

          

10243 5123 

Strong turbulence 

    

Weak turbulence 

    

    Both laboratory and  numerical experiments 
show that the dissipation rate  of turbulent flows 

   becomes independent of the fluid viscosity for large Re 
       
   

    

Energy 
dissipation 

rate  



L 

２π

	L	is	the	
integral	
scale	
at	which	
energy	
is	injected	
	

Okamoto, M.F., 
et al. 2007
Phys. Fluids,
19(11), 11519

  DNS 
N=20483 

Wavelet filtering of a 3D turbulent flow  



L 

λ

Zoom	(sub-cube	10243	)	

Resolu?on	
N=20483	

			λ,	
micro-	
échelle	
			de		
Taylor	
	

				L,	
échelle	
intégrale	
	

Okamoto, M.F., 
et al. 2007
Phys. Fluids,
19(11), 11519



L 

λ

Resolu?on	
N=20483	

				L,	
échelle	
intégrale	
	
			λ,	
micro-	
échelle	
			de		
Taylor	
	

Zoom	(sub-cube	5123	)	

Okamoto, M.F., 
et al. 2007
Phys. Fluids,
19(11), 11519



λ
η

						η,	
		échelle	
dissipa?ve	
							de	
Kolmogorov		

			λ,	
micro-	
échelle	
			de		
Taylor	
	

Zoom	(sub-cube	2563	)	

DNS 
N=20483 

Okamoto, M.F., 
et al. 2007
Phys. Fluids,
19(11), 11519



Total vorticity 
 

     + 
 

2.6 % N coefficients 
80% enstrophy 

99% energy 

97.4 % N coefficients 
20 % enstrophy 

1% energy 

Incoherent vorticity Coherent vorticity 

DNS 
N=20483 

|ω|=5σ  |ω|=5/3σ  

|ω|=5σ with σ=(2Ζ)1/2  

Okamoto, Yoshimatsu, 
Schneider, M.F., Kaneda, 

2007,
Phys. Fluids, 19, 1159

Wavelet filtering of a 3D turbulent flow  



All	vor?city	tubes	(green)	have	been	extracted	as	coherent	(red)	



The	remaining	background	flow	does	not	contain	vor?city	tubes	



Okamoto, Yoshimatsu, 
Schneider, M.F., Kaneda, 

2007,
Phys. Fluids, 19, 1159

# of retained wavelet coefficients 



Okamoto, Yoshimatsu, Schneider, M.F., Kaneda, 2007,
Phys. Fluids, 19, 1159

			Only	the	coherent	flow	is	nonlinearly	transferring	energy	
while	the	incoherent	flow	is	not	ac;ve	in	the	iner;al	range	

DNS 
N=20483 



M. F., Pellegrino and Schneider, 2001,
‘Coherent vortex extraction in 3D turbulent flows 

using orthogonal wavelets’, 
Phys. Rev. Lett.., 87(5)

Coherent 
vortex tubes 

with depletion  
of nonlinearity 

(peaked at |h|=1) 

PDF of relative helicity  

Incoherent  
background flow 
(equidistributed) 



HOW TO MODEL  
AND COMPUTE 

TURBULENT FLOWS ? 



over all scales 

over all scales 
at the smallest scales 





Kolmogorov		
Dissipa?ve	scale	



Wavelet-based definition of turbulent dissipation 

Molecular	dissipa?on	
at	small	viscous	scales	

Nonlinear	transport	
all	over	iner?al	scales	

Turbulent	dissipa?on	is	
	incoherent	enstrophy	
all	over	iner?al	scales	



Simula?on	of	a	2D	homogeneous	turbulent	flow	



Interface	between	the	strong	and	weak	incoherent	wavelet	coefficients	

The	strong	wavelet	coefficients		are	below	the	interface	
and	correspond	to	the	flow	generated	by	the	coherent	vor?ces	

The	weak	wavelet	coefficients	are	above	the	interface	
and	correspond	to	the	incoherent	dissipa?ve	background	flow	



Interface	between	the	strong	and	weak	incoherent	wavelet	coefficients	

The	strong	wavelet	coefficients		are	below	the	interface	
and	correspond	to	the	flow	generated	by	the	coherent	vor?ces.	

The	weak	wavelet	coefficients	are	above	the	interface	
and	correspond	to	the	incoherent	dissipa?ve	background	flow.	



‘We conjecture that turbulent flows can be described 
as a superposition of metastable coherent vortices 
that are not in statistical equilibrium. Their nonlinear 

interactions are responsible for the chaotic behaviour 
of turbulent flows and generate a random incoherent 

flow, which then relaxes towards statistical 
equilibrium and is dissipated at the smallest scales.’ 

M. F., Pellegrino and Schneider, 2001,
‘Coherent vortex extraction in 3D turbulent flows using 

orthogonal wavelets’, 
Phys. Rev. Lett.., 87(5)



‘We conjecture that the wavelet 
representation, formulated in terms of both 
space and scale, allows such a decoupling 
between organized motions out of statistical 

equilibrium and random motions in 
statistical equilibrium. Both components are 

multiscale but have different probability 
distributions and correlations.’ 

M. F., Pellegrino and Schneider, 2001,
‘Coherent vortex extraction in 3D turbulent flows using 

orthogonal wavelets’, 
Phys. Rev. Lett.., 87(5), 2001



‘This gives us incentives to extend the CVS method to 
compute three-dimensional Navier-Stokes equations in 
an adaptive wavelet basis, remapped at each time step 
to track the nonlinear vortex dynamics in both space and 
scale, as we have done for two-dimensional turbulent 
flows. The advantage of the CVS method is to combine 
an Eulerian representation of the solution in a wavelet 
basis with a Lagrangian strategy to adapt the basis in 
space and scale, to track the formation, advection, and 
dissipation of vortex tubes whatever their scales.’ 

 
M. F., Pellegrino and Schneider, 2001,

‘Coherent vortex extraction in 3D turbulent flows using 
orthogonal wavelets’, 

Phys. Rev. Lett.., 87(5), 2001



http://turbulence.ens.fr

M. F., 1992
Wavelet transforms and their applications to turbulence,

Ann.Rev.Fluid Mech., 24, 395-457

http://openscience.ens.fr/MARIE_FARGE

http://aifit.cfd.tu-berlin.de

https://www.ipam.ucla.edu/programs/workshops/
turbulent-dissipation-mixing-and-predictability/

13 January 2017 at 9 50 a.m.
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- Prof. Kai Schneider, Aix-Marseille Univ. and IMM, Marseille 
- Prof.Dmitry Kolomenskiy, Skoltech, Moscow and JAMSTEC, Tokyo 

-   Dr. Thomas Engels, CR CNRS, ISM, Marseille, and TU Berlin  
	

M. F., 2022
The evolution of turbulence theories

 and the need for continuous wavelets
arXiv: 2209.01808


